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Abstract

With the growth of the Internet and E-commerce, bi-
partite rating networks are ubiquitous. In such bipar-
tite rating networks, there exist two types of entities:
the users and the objects, where users give ratings to
objects. A fundamental problem in such networks is
how to rank the objects by user’s ratings. Although it
has been extensively studied in the past decade, the ex-
isting algorithms either cannot guarantee convergence,
or are not robust to the spammers. In this paper, we
propose six new reputation-based algorithms, where the
users’ reputation is determined by the aggregated differ-
ence between the users’ ratings and the corresponding
objects’ rankings. We prove that all of our algorithms
converge into a unique fixed point. The time and space
complexity of our algorithms are linear w.r.t. the size of
the graph, thus they can be scalable to large datasets.
Moreover, our algorithms are robust to the spamming
users. We evaluate our algorithms using three real
datasets. The experimental results confirm the effec-
tiveness, efficiency, and robustness of our algorithms.

1 Introduction

With the development of the Internet and E-commerce,
bipartite rating networks, such as the product re-
view systems of Amazon and Epinions, Community
Question-Answer systems, Movie-rating systems in
IMDB, Video rating system in Youtube, and paper re-
view systems, have become increasingly popular in re-
cent years. In such rating systems, there are two types
of entities, users and objects, where users rate objects.

Given a bipartite rating network, a fundamental
question is how to rank the objects based on users’
ratings? A straightforward method is to average the
ratings for each object, and then rank the objects
in terms of their average ratings. In this case, the
users’ ratings are evenly trustworthy. However, in many
practical systems, there exist many noisy ratings. Some
users may give ratings randomly, some users always
give the maximal/ minimal ratings, and some users
are malicious users. As discussed in [13], building a
robust ranking mechanism for bipartite rating networks
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is challenging. Many existing ranking algorithms such
as PageRank [5], HITS [18], and trust propagation [11]
suffer from such noise in the datasets, thus may result
in poor ranking performance in this context [8].

To address this issue, many ranking algorithms
have been proposed by incorporating users’ reputation
[23]. The main ideas of these algorithms are that they
make use of users’ reputation as the weight to eliminate
unreasonable ratings influence, and the objects’ ranking
is determined by the average weighted rating score. The
algorithms iteratively refine the users’ reputation score
and objects’ ranking score. In these algorithms, the
reputation of the user is measured by the difference
between his ratings and the corresponding objects’
ranking. As a result, the users whose ratings often
differ from those of the other users are assigned less
reputation score. However, most of these algorithms
[25, 19, 32, 34] cannot guarantee convergence, thus can
be hard to be used in practice. Recently, Kerchove
et al. [8] propose a provably convergent reputation-
based ranking algorithm, but their algorithm is not
very robust to the spammers and the parameter of
their algorithm is sensitive to the convergent property,
thereby it is hard to be determined in practice. In
bipartite rating networks, we argue that a good ranking
algorithm should be (1) convergent to a unique fixed
ranking vector, (2) robust to the spammers, (3) easy to
be implemented in practice, and (4) scalable to large
datasets.

To achieve these goals, in this paper, we propose six
new reputation-based ranking algorithms (the L1-AVG,
L2-AVG, L1-MAX, L2-MAX, L1-MIN, and L2-MIN al-
gorithm). In our algorithms, user’s reputation is de-
termined by the aggregated difference between his/her
ratings and the corresponding objects’ rankings. Specif-
ically, we use L1/L2-distance to measure the difference
and use average, maximal, and minimal operators as
the aggregate function. After obtaining the reputation
of the users, we compute the objects’ ranking by aver-
aging the reputation-weighted ratings. Our algorithms
will iteratively refine the users’ reputation score and the
objects’ ranking score. The final ranking and reputa-
tion scores are achieved when the algorithms converge.
We evaluate our algorithms using three real rating net-
works. We measure the performance of our algorithms
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from two aspects: the effectiveness and the robustness.
For the effectiveness, we use the average-ratings based
ranking algorithm and three reputation-based ranking
algorithms as the baselines, and evaluate the effective-
ness by comparing the rank correlation between the pro-
posed algorithms and the baselines using the Kendall
Tau [17] metric. The experimental results show that
the L1-MIN and L2-MIN algorithm outperform the the
state-of-the-art reputation-based ranking algorithm on
most datasets, and the performance of other proposed
algorithm are also comparable to the state-of-the-art al-
gorithm. This results indicate that our algorithms are
effective for ranking. For the robustness, we consider
three types of spamming users: (1) users who give ran-
dom ratings, (2) uses who always give maximal ratings,
and (3) users who always give minimal ratings. The ex-
perimental results show that our proposed algorithms
(L1/L2-AVG and L1/L2-MAX) are significantly more
robust than the state-of-the-art algorithm.

The main contributions of this paper are summa-
rized as follows. First, we propose six new reputation-
based ranking algorithms. The main advantages of our
algorithms are robust to the spammers, convergent into
a fixed point with an exponential rate of convergence,
and easy to be implemented. Moreover, the time and
space complexity of our algorithms is linear w.r.t. the
size of the graphs, thus they can be scalable to large
datasets. Second, we conduct extensive experiments on
three real datasets (Amazon, Epinions, and Bookcross-
ing), and the experimental results confirm the effective-
ness, efficiency and robustness of our algorithms.

The rest of the paper is organized as follows. We
introduce the related work in Section 2. We propose six
various reputation based ranking algorithms in Section
3, and present the analysis of our algorithms in Section
4. We show the extensive experimental results in
Section 5. Section 6 concludes this work.

2 Related Work
Ranking algorithms on bipartite graphs: Since the
introduction of PageRank [5] and HITS [18], developing
algorithms for ranking nodes in networks have attracted
much attention in both research and industry communi-
ties. In the past decade, a large number of algorithms,
such as personalized PageRank [12] and Co-HITS [9],
have been proposed. Most of these algorithms do not
consider users’ reputation in ranking. To address the
users’ reputation, Mizzaro [25] proposes a reputation-
based ranking algorithm (Mizz) for the assessment of
scholarly papers. In [25], the reputation is measured
by the root of L1-distance between paper’s quality and
reader’s rating. Subsequently, Yu et al. present an it-
erative refinement algorithm (YZLM) for bipartite rat-

ing networks, with reputation scores for users [32, 19].
In their papers, the reputation is measured by the in-
verse of square L2-distance between objects’ ranking
and users’ rating. More recently, Zhou et al. [34] pro-
pose a similar reputation-based ranking algorithm for
rating networks, where the reputation is measured by
the correlation coefficient between the user’s rating and
objects’ ranking. However, all of these reputation-based
algorithms cannot guarantee convergence, thereby can
be hard to be used in practice. A good survey can be
found in [23]. To overcome the convergence issue, Ker-
chove et al. [8] propose a convergent reputation-based
ranking algorithm (dKVD) from an optimization per-
spective. The major drawbacks of their algorithm are
(1) the algorithm is not very robust to the spamming
users, (2) the rate of convergence of the algorithm is
q-linear, and (3) the parameter is sensitive to the con-
vergence of the algorithm, thus it is hard to be deter-
mined in practice. More recently, Mishra, et al. [24] pro-
pose a trust-based ranking algorithm for finding biased
and prestigious nodes in signed networks [21]. However,
their work is tailored for the signed networks, and the
simple generalization of their algorithm to the bipar-
tite rating networks will ignore the negative bias of the
nodes, thus resulting in unfair reputation measurement
and poor ranking performance.

Reputation system: Our work is also closely related
to the reputation system [28, 33, 27]. The reputation
system computes the reputation score for a set of en-
tities (such as the service providers and users in rat-
ing networks) through collecting and aggregating feed-
back about the entities’ past behavior. There are two
types of reputation systems: the content-driven and
user-driven reputation system [7]. The content-driven
systems derive entities’ feedback from an analysis of
all interactions [1, 7, 31]. Such systems include Wik-
iTrust (www.wikitrust.net) [1] and Crowdsensus sys-
tem [7]. The user-driven systems are more related to
our work, which is based on user ratings. Such sys-
tems include Amazon, Epinions, and ebay systems of
product reviews. There are a large body of work for
user-driven reputation systems. A survey can be found
in [14]. In the following, we list some important work on
user-driven reputation systems. Mui et al. [26] propose
a computational model of reputation management for E-
businesses. Subsequently, Richardson et al. [29] propose
an eigenvector based algorithm for trust (or reputation)
management in semantic web. Independent to Richard-
son’s work, Kamvar et al. [16] present a similar eigenvec-
tor based algorithm, namely Eigentrust, for reputation
management in P2P networks. Guha et al. [11] study
the problem of propagation of trust and distrust in the
networks. Later, Theodorakopoulos et al. [30] study the
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trust model and trust evaluation metrics from an alge-
bra viewpoint. They use semiring to express trust model
and then model the trust evaluation problem as a path
problem on a directed graph. Recently, Andersen et al.
[2] propose an axiomatic approach for trust based rec-
ommendation systems [22]. However, all the above men-
tioned algorithms are the variants of eigenvector central-
ity measure [4], thus cannot be used in our problem. An-
other direction of research on reputation management
is based on probabilistic model. Fouss et al. [10] pro-
pose a probabilistic reputation model. Their algorithm
assumes the providers’ reputation following a normal
law. However, in some practical systems, this assump-
tion cannot hold, thus may result in poor performance.
More recently, Chen et al. [6] propose a bias-smoothed
tensor model for reputation management. The major
drawback of their method is that it cannot be scalable
to large datasets.

3 Robust Reputation-Based Ranking

We model a rating network as a directed and weighted
bipartite graph G = (U,O,R). Here, U is a set of
U-typed nodes representing users, O is a set of O-
typed nodes representing objects to be ranked, and R
is a set of directed edges from U-typed nodes to O-
typed nodes. We use |U |, |O|, and |R| to represent the
sizes of U , O, and R, respectively. Given a U-typed
node ui, we use Oi to denote the set of objects the
user ui rates (Oi = {oj | (ui, oj) ∈ R}), and we use
Ij to denote the set of users who rate the object oj

(Ij = {ui | (ui, oj) ∈ R}). The specific rating score of
object oj given by a user ui is denoted as Rij , which is
the weight associated with the edge (ui, oj) ∈ R, and
the rating score is normalized in the range of [0, 1]. In
addition, in this paper, we use ci and rj to denote the
reputation of user ui and the ranking score of object oj ,
and we also use r and c to denote the ranking vector of
objects and the reputation vector of users (Table 1).

Table 1: Notations.
Symbols Descriptions

rj rank of object oj

r ranking vector of objects
ci reputation of user ui

c reputation vector of users
Rij the rating score of object oj by user ui

λ decay constant, and belongs into (0,1)

o1 o2 o3 o4 o5

u1 u2 u3 u4

0.6
0.6

0.3

0.2

0.8 0.5

0.5
0.5 0.2

0.8

0.5

0.4

Figure 1: A rating network

An example is shown in Fig. 1. There are
4 users U = {u1, u2, u3, u4}, and 5 objects O =
{o1, o2, o3, o4, o5}. For example, u1 rates o1 0.6 (R11 =
0.6), o2 0.3 (R12 = 0.3), and o4 0.2 (R14 = 0.2); u4

rates o3 0.8 (R43 = 0.8), o4 0.5 (R44 = 0.5), and o5

0.4 (R45 = 0.4). As can be seen from the example, u1

gives rather low rating scores to the objects, u4 gives
o3 a high rating score among the three objects he/she
gives. Given such a scenario, if we take the average as
the ranking score of an object, then the ranking scores
for o1, o2, o3, o4, and o5 are: r1 = (0.6 + 0.6)/2 = 0.6,
r2 = (0.3+0.8)/2 = 0.55, r3 = (0.5+0.5+0.8)/3 = 0.6,
r4 = (0.2 + 0.2 + 0.5)/3 = 0.3, and r5 = (0.5 + 0.4)/2 =
0.45. As a result, o1 and o3 are the top objects, and o4

is the last in such ranking. However, such ranking does
not take users’ reputation into consideration. Consider
u4 who rates o3 the highest 0.8 among the rating score.
However, to the object o3, the other two users u2 and u3

only rate 0.5. In other words, the rating score 0.8 given
by the user u4 to the object o3 is not consistent with the
other rating scores given by the other users who score
the same object on average. This implies that the rep-
utation of u4 (denoted as c4) can be possibly damaged.
In this paper, we investigate how to give objects a rank-
ing score (rj) by taking the users reputations (ci) into
consideration over a rating network.

There are several key issues. One is the conver-
gence, which we will discuss in detail. The other is
the robustness. In many occasions, users may not nec-
essarily spend time on the rating. Some may give a
random rating score, some may always give the max-
imal/minimal rating score, and some may give unrea-
sonable rating scores on purpose. This is considered as
noise in this paper. Reconsider the example shown in
Fig. 1. Suppose that there exist some additional users
who always give all the objects (o1, · · · , o5) the high-
est rating score or the lowest rating score or give ran-
dom ratings. A ranking algorithm is not robust if the
rankings of the objects are significantly affected by such
users. In this paper, we propose new ranking algorithms
that converge and are robust to such users.

3.1 The Problems of the Existing Solutions. To
handle the noise, one solution is to remove such noise
using some statistical methods in a preprocessing step
and rank objects using an existing ranking algorithm
[24]. This method has two major drawbacks: (1) the
statistical methods are very hard to be used to detect
the users who give random rating scores, and (2) some
important rating scores given by some users can be pos-
sibly removed by the statistical methods applied. To
address this issue, recently, many researchers develop
reputation-based ranking algorithms that use users’ rep-
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utation to weight their rating scores and then aggregate
the reputation-weighted rating scores for ranking iter-
atively. This type of algorithms can mitigate negative
influence by assigning a small reputation score to users
if they give some unreasonable scores and thus reducing
their contribution to the ranking.

Table 2: Ranking scores by Mizz algorithm [25].
Iter. o1 o2 o3 o4 o5

1 0.6000 0.5500 0.6000 0.3000 0.4500
2 0.6000 0.5521 0.5901 0.2907 0.4547
3 0.6000 0.5523 0.5880 0.2886 0.4554
4 0.6000 0.5523 0.5875 0.2881 0.4555
5 0.6000 0.5523 0.5874 0.2880 0.4556

Table 3: Ranking scores by YZLM algorithm [32].
Iter. o1 o2 o3 o4 o5

1 0.6000 0.5500 0.6000 0.3000 0.4500
2 0.6000 0.5658 0.5775 0.2805 0.4548
3 0.6000 0.5806 0.5628 0.2673 0.4594
4 0.6000 0.5949 0.5529 0.2581 0.4627
5 0.6000 0.6087 0.5459 0.2515 0.4654

Table 4: Ranking scores by dKVD algorithm [8].
Iter. o1 o2 o3 o4 o5

1 0.6000 0.5500 0.6000 0.3000 0.4500
2 0.6000 0.6621 0.5000 0.2000 0.5000
3 0.6000 0.6745 0.5000 0.2000 0.5000
4 0.6000 0.6908 0.5000 0.2000 0.5000
5 0.6000 0.7147 0.5000 0.2000 0.5000

In the existing reputation-based algorithms, the
reputation is based on the same intuition: “the users
whose ratings often differ from those of other users
are assigned less reputation score”. However, the
existing reputation-based ranking algorithms [19, 32,
25] do not guarantee convergence of the algorithm as
pointed out in [8, 23]. Consider the rating network in
Fig. 1. Table 2 and Table 3 show the ranking scores
by the Mizz algorithm [25] and the YZLM algorithm
[32] in the first 5 iterations, respectively. As can be
seen, the ranking scores of objects either monotonically
increases or decreases as the iteration increases. We
set the maximal iteration to 30, and we find that both
Mizz and YZLM algorithm do not converge after 30
iterations. This results suggest that both Mizz and
YZLM algorithm do not converge. As an exception,
in [8], the authors proposed a provably convergent
reputation-based ranking algorithm dKVD. However,
the convergent rate of the dKVD algorithm is q-linear.
Indeed, as shown in Table 4, the dKVD algorithm does
not converge in 5 iterations on the same rating network
(Fig. 1). The parameter is sensitive to the convergence
of the algorithm and is hard to be determined in
practice. In addition, the dKVD algorithm is not robust
to the spamming users as shown in our experiments.

To summarize, as discussed in [13], developing a ro-
bust and provably convergent reputation-based ranking
algorithm is challenging.

3.2 Our Solutions. In this paper, we propose six
provably convergent reputation-based ranking algo-
rithms, based on the basic idea “the users whose rat-
ings often differ from those of other users are assigned
less reputation score”. Moreover, most of our algo-
rithms (L1/L2-AVG and L1/L2-MAX) are quite robust
as shown in the experiments. The two main compo-
nents in our algorithms are, namely, the distance func-
tion and the aggregate operator. Consider a user ui and
an object oj . The distance function is used to measure
the difference between the user’s rating score Rij and
the corresponding object’s ranking score rj . We focus
on two distance functions: L1-distance |Rij − rj |, and
the square of L2-distance (Rij − rj)2. In the follow-
ing, a distance function is either L1-distance or square
of L2-distance. As also indicated in our experiments,
L1-distance based algorithms are more robust than the
square of L2-distance based algorithms, because L1-
distance is more robust than L2-distance for the noisy
data. The aggregate operators, AVG, MAX, and MIN,
are used to determine the reputation ci of user ui by av-
eraging the differences, taking the maximum difference,
and taking the minimum difference, respectively. In-
tuitively, the aggregator MAX heavily penalizes a user
who gives even one unreasonable rating score. Here the
unreasonable rating score means that the rating score is
significantly different from the ranking score computed.
On the other hand, the aggregator MIN gives a user
minimum penalty even though the user may give many
unreasonable rating scores. As an extreme case, as long
as a user gives only one reasonable rating, then his/her
reputation will be 1 (highest reputation). The aggrega-
tor AVG averages over all the differences, thus it would
be a good tradeoff between the aggregator MAX and
MIN. We summarize the proposed algorithms in Table
5, and discuss them in details below.

The L1-AVG algorithm: The reputation ci of a user
ui is defined by using the L1-distance to measure the
rating difference and employing AVG to aggregate user’s
rating difference. Formally, the reputation ci of a user
ui is defined as

ci = 1− λ

|Oi|
∑

oj∈Oi

|Rij − rj |,(3.1)

where Oi is the set of objects rated by a user ui, Rij is
the scaled rating score of the user ui to an object oj , rj

is the ranking score of the object oj , and λ is a decay
constant in (0, 1). In L1-AVG, the reputation score
of user ui is inversely proportional to the L1-distance
between his/her rating vector and the corresponding
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Table 5: Summary of the proposed algorithms.
Algorithm Distance Aggregate Convergence Convergence Rate Time complexity Space complexity

L1-AVG L1 Average Yes Exponential O(k|R|) O(|R|+ |U |+ |O|)
L2-AVG L2 Average Yes Exponential O(k|R|) O(|R|+ |U |+ |O|)
L1-MAX L1 Max Yes Exponential O(k|R|) O(|R|+ |U |+ |O|)
L2-MAX L2 Max Yes Exponential O(k|R|) O(|R|+ |U |+ |O|)
L1-MIN L1 Min Yes Exponential O(k|R|) O(|R|+ |U |+ |O|)
L2-MIN L2 Min Yes Exponential O(k|R|) O(|R|+ |U |+ |O|)

objects’ ranking scores. In other words, the larger L1
distance, the smaller the reputation score.

Our L1-AVG algorithm takes an iterative approach
by applying the reputation defined in Eq. (3.1) to weight
the user’s rating score and then refining the objects’
ranking and users’ reputation as follows.





rk+1
j = 1

|Ij |
∑

ui∈Ij

Rijc
k
i

ck+1
i = 1− λ

|Oi|
∑

oj∈Oi

|Rij − rk+1
j |(3.2)

Here, k indicates the k-th iteration, and ck
i is the user’s

reputation ci in the k-th iteration, and rk
j is the rank of

object oj in the k-th iteration. Below, all the equations
and algorithms are defined in a similar fashion. We omit
explanation unless necessary.

Table 6 shows the ranking scores of the objects in
Fig. 1. The results show that the L1-AVG algorithm
converges in 4 iterative steps, as the rate of convergence
of this algorithm is exponential.

Table 6: Ranking scores by L1-AVG algorithm.
Iter. o1 o2 o3 o4 o5

1 0.6000 0.5500 0.6000 0.3000 0.4500
2 0.5935 0.5443 0.5927 0.2961 0.4445
3 0.5935 0.5442 0.5927 0.2961 0.4444
4 0.5935 0.5442 0.5927 0.2961 0.4444

The L2-AVG algorithm: Unlike the L1-AVG algo-
rithm, the L2-AVG algorithm uses the square of L2-
distance.

ci = 1− λ

2|Oi|
∑

oj∈Oi

(Rij − rj)2.(3.3)

Note that the additional constant coefficient (1/2) is
used to ensure the convergence of the algorithm. The
corresponding iterative system of the L2-AVG algorithm
is formulated as follows.





rk+1
j = 1

|Ij |
∑

ui∈Ij

Rijc
k
i

ck+1
i = 1− λ

2|Oi|
∑

oj∈Oi

(Rij − rk+1
j )2

(3.4)

The L1-MAX algorithm: The reputation ci of a
user ui is defined by using L1-distance to measure
the rating difference and employing MAX to aggregate

user’s rating difference.

ci = 1− λ max
oj∈Oi

|Rij − rj |(3.5)

The L1-MAX algorithm takes an iterative approach by
applying the reputation defined in Eq. (3.5) to weight
the user’s rating score and then refining the objects’
ranking and users’ reputation as follows.





rk+1
j = 1

|Ij |
∑

ui∈Ij

Rijc
k
i

ck+1
i = 1− λ max

oj∈Oi

|Rij − rk+1
j |.(3.6)

The L2-MAX algorithm: Instead of L1-distance, the
L2-MAX algorithm uses the square of L2-distance.

ci = 1− λ

2
max
oj∈Oi

(Rij − rj)2.(3.7)

Also, the additional coefficient (1/2) is used to guaran-
tee the convergence. The corresponding iterative system
of the L2-MAX algorithm is given as follows.





rk+1
j = 1

|Ij |
∑

ui∈Ij

Rijc
k
i

ck+1
i = 1− λ

2 max
oj∈Oi

(Rij − rk+1
j )2.

(3.8)

The L1-MIN algorithm: The reputation ci of a user
ui is defined by using L1-distance to measure the rating
difference and employing MIN to aggregate user’s rating
difference.

ci = 1− λ min
oj∈Oi

|Rij − rj |(3.9)

The L1-MIN algorithm takes an iterative approach by
applying the reputation defined in Eq. (3.9) to weight
the user’s rating score and then refining the objects’
ranking and users’ reputation as follows.





rk+1
j = 1

|Ij |
∑

ui∈Ij

Rijc
k
i

ck+1
i = 1− λ min

oj∈Oi

|Rij − rk+1
j |.(3.10)

The L2-MIN algorithm: We develop the L2-distance
based minimal reputation algorithm as follows.

ci = 1− λ

2
min

oj∈Oi

(Rij − rj)2.(3.11)
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Like other L2-distance based algorithms, the additional
coefficient (1/2) is used to ensure the convergence. The
corresponding iterative system is given as follows.





rk+1
j = 1

|Ij |
∑

ui∈Ij

Rijc
k
i

ck+1
i = 1− λ

2 min
oj∈Oi

(Rij − rk+1
j )2.

(3.12)

4 Analysis of the proposed algorithms

In this section, we analyze the convergent properties,
the rate of convergence, and the complexity of the pro-
posed algorithms. Since the proofs of convergent prop-
erties of the L2-distance based algorithms (L2-AVG,
L2-MAX, and L2-MIN) are similar to the L1-distance
based algorithms (L1-AVG, L1-MAX, L1-MIN), we fo-
cus on analyzing the properties of L1-distance based
algorithms, and omit the details for L2-distance based
algorithms.

Convergence of the L1-AVG algorithm: We first
prove the L1-AVG algorithm converges to a fixed point,
and then we prove the uniqueness of the fixed point. To
prove the convergence, we give Lemma 4.1.

Lemma 4.1. In L1-AVG algorithm, let |r1
β − r0

β | =
max

j
|r1

j − r0
j |, then for any object oj, we have |rk+1

j −
rk
j | ≤ λk|r1

β − r0
β |.

Proof. We prove it by induction. First, we prove the
lemma holds when k = 1.

|r2
j − r1

j | = | 1
|Ij |

∑
ui∈Ij

c1
i Rij − 1

|Ij |
∑

ui∈Ij

c0
i Rij |

= 1
|Ij | |

∑
ui∈Ij

( λ
|Oi|

∑
oγ∈Oi

|Riγ − r0
γ | − λ

|Oi|
∑

oγ∈Oi

|Riγ − r1
γ |)Rij |

≤ λ
|Ij |

∑
ui∈Ij

( 1
|Oi|

∑
oγ∈Oi

|(|Riγ − r0
γ | − |Riγ − r1

γ |)|Rij

≤ λ
|Ij |

∑
ui∈Ij

( 1
|Oi|

∑
oγ∈Oi

|r1
γ − r0

γ |Rij)

≤ λ
|Ij |

∑
ui∈Ij

( 1
|Oi|

∑
oγ∈Oi

|r1
β − r0

β |Rij)

≤ λ
|Ij |

∑
ui∈Ij

|r1
β − r0

β |Rij)

≤ λ|r1
β − r0

β |

Second, we assume the lemma holds when k = t, and
show the lemma holds when k = t + 1.

|rt+2
j − rt+1

j |
= 1

|Ij | |
∑

ui∈Ij

( λ
|Oi|

∑
oγ∈Oi

|Riγ − rt
γ |

− λ
|Oi|

∑
oγ∈Oi

|Riγ − rt+1
γ |)Rij |

≤ λ
|Ij |

∑
ui∈Ij

( 1
|Oi|

∑
oγ∈Oi

|(|Riγ − rt
γ | − |Riγ − rt+1

γ |)|Rij)

≤ λ
|Ij |

∑
ui∈Ij

( 1
|Oi|

∑
oγ∈Oi

|rt+1
γ − rt

γ |Rij)

≤ λt+1

|Ij |
∑

ui∈Ij

( 1
|Oi|

∑
oγ∈Oi

|r1
β − r0

β |Rij)

≤ λt+1|r1
β − r0

β |

where the third inequality holds by the induction as-
sumption, and the last inequality holds due to Rij ∈
[0, 1]. This completes the proof. ¤

With Lemma 4.1, we prove the following conver-
gence theorem.

Theorem 4.1. The L1-AVG algorithm converges to a
unique fixed point.

Proof. We first prove the L1-AVG algorithm converges
into a fixed point, and then prove the uniqueness of
the fixed point. Let |r1

β − r0
β | = max

j
|r1

j − r0
j |, and

|r1
β − r0

β | 6= 0. For ε > 0, there exists N such that

λN ≤ (1− λ)ε
|r1

β − r0
β |

Then, for any s > t ≥ N , we have

|rs
j − rt

j | ≤ |rs
j − rs−1

j |+ |rs−1
j − rs−2

j |+ · · ·+ |rt+1
j − rt

j |
≤ λs−1|r1

β − r0
β |+ λs−2|r1

β − r0
β |+ · · ·+ λt|r1

β − r0
β |

≤ |r1
β − r0

β |λt
s−t−1∑

k=0

λk

< |r1
β − r0

β |λt
∞∑

k=0

λk

= |r1
β − r0

β |λt 1
1−λ

≤ |r1
β − r0

β |λN 1
1−λ

≤ ε,

where the first inequality holds due to the triangle
inequality, the second inequality is due to Lemma 4.1.
By Cauchy convergence theorem, we conclude that the
sequence rk

j converges to a fixed point.
For the uniqueness, we prove it by a contradiction.

Suppose the iterative system (Eq. (3.2)) has at least two
fixed points. Let r(1) and r(2) be the two fixed points,
and M = |r(1)

β − r
(2)
β | = max

j
|r(1)

j − r
(2)
j |. Then, we have

M = |r(1)
β − r

(2)
β | = 1

|Iβ | |
∑

ui∈Iβ

(c
(1)
i − c

(2)
i )Riβ |

= 1
|Iβ | |

∑
ui∈Iβ

( λ
|Oi|

∑
oγ∈Oi

|Riγ − r
(1)
γ | − λ

|Oi|
∑

oγ∈Oi

|Riγ − r
(2)
γ |)Riβ |

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|r(1)
γ − r

(2)
γ |Riβ)

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|r(1)
β − r

(2)
β |Riβ)

≤ λ
|Ij |

∑
ui∈Ij

|r(1)
β − r

(2)
β |Rij)

≤ λ|r(1)
β − r

(2)
β |

= λM.

Since λ ∈ (0, 1), we have M < M , which is a
contradiction. This completes the proof. ¤
The rate of convergence of L1-AVG algorithm:
We show the rate of convergence of the L1-AVG algo-
rithm is exponential. By definition, we have the follow-
ing lemma.
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Lemma 4.2. For any iterative steps a and b,

|ra
β − rb

β | = max
j
|ra

j − rb
j | ≤ 1.

Then, we can prove that the L1-AVG algorithm will
converge into the fixed point in exponential rate.

Lemma 4.3. In the L1-AVG algorithm, let r∞ and c∞

denote the final ranking vector of the objects and the
final reputation vector of the users, respectively. And let
|r∞β − rk

β | = max
j
|r∞j − rk

j |. Then, we have |r∞β − rk
β | ≤

λk.
Proof. We prove the lemma by induction. First, for
k = 1, we have

|r∞β − r1
β | = | 1

|Iβ |
∑

ui∈Iβ

c∞i Riβ − 1
|Iβ |

∑
ui∈Iβ

c0
i Riβ |

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|(|Riγ − r0
γ | − |Riγ − r∞γ |)|Riβ)

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|r∞γ − r0
γ |Riβ)

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|r∞β − r0
β |Riβ)

≤ λ
|Iβ |

∑
ui∈Iβ

|r∞β − r0
β |Rij)

≤ λ|r∞β − r0
β |

≤ λ,

where the last inequality is due to Lemma 4.2. Second,
suppose the lemma holds when k = t. Then, for
k = t + 1, we have

|r∞β − rt+1
β | = | 1

|Iβ |
∑

ui∈Iβ

c∞i Riβ − 1
|Iβ |

∑
ui∈Iβ

ct
iRiβ |

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|(|Riγ − rt
γ | − |Riγ − r∞γ |)|Riβ)

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|r∞γ − rt
γ |Riβ)

≤ λ
|Iβ |

∑
ui∈Iβ

( 1
|Oi|

∑
oγ∈Oi

|r∞β − rt
β |Riβ)

≤ λt+1

|Iβ |
∑

ui∈Iβ

|r∞β − r0
β |Rij)

≤ λt+1|r∞β − r0
β |

≤ λt+1.

Thus, we have |r∞β −rk
β | ≤ λk. This completes the proof.

¤
Assume rj is the true ranking score of the object

oj , we can determine the number of iterations k for
the algorithm to converge to the true rj . Formally, for
ε → 0, |rj − rk

j | ≤ ε. In terms of Lemma 4.3, we can set

k = logλ ε.(4.13)

Thus, the number of iterations of the L1-AVG algorithm
(k) is a small constant. In our experiments, k = 10 is
enough to guarantee the convergence of the algorithm.

Complexity of L1-AVG algorithm: The time com-
plexity of computing the ranking of an object in a single

iteration is O(|Ī||Ō|), where |Ī| and |Ō| denote the aver-
age in-degree of the objects and the average out-degree
of the users, respectively. By analysis, the amortized
cost in a single iteration is O(|R|), where |R| is the to-
tal number of edges (ratings) in the bipartite graph.
Consequently, for k iterations, the total running time
of the L1-AVG algorithm is O(k|R|), where k is a small
constant. The space complexity is O(|R| + |U | + |O|),
because we only need to store the ranking vector r, the
reputation vector c, and the bipartite graph G.

Convergence of L1-MAX algorithm: Similar to the
proof of L1-AVG algorithm, we first prove the error
bound for the two consecutive iterations and then use
Cauchy convergence theorem to prove the convergence.
First, we show the following two lemmas.

Lemma 4.4. Let r(1) and r(2) be two ranking vectors,
and |r(1)

β − r
(2)
β | = max

j
|r(1)

j − r
(2)
j |. Then, for any

user ui with the corresponding object set Oi, we have
| max
oj∈Oi

|Rij − r
(1)
j | − max

oj∈Oi

|Rij − r
(2)
j || ≤ |r(1)

β − r
(2)
β |.

Proof. Let |Riγ − r
(1)
γ | = max

oj∈Oi

|Rij − r
(1)
j |, and |Riθ −

r
(2)
θ | = max

oj∈Oi

|Rij−r
(2)
j |. Obviously, | max

oj∈Oi

|Rij−r
(1)
j |−

max
oj∈Oi

|Rij − r
(2)
j || either equals to max

oj∈Oi

|Rij − r
(1)
j | −

max
oj∈Oi

|Rij−r
(2)
j | or equals to max

j∈Oi

|Rij−r
(2)
j |−max

j∈Oi

|Rij−
r
(1)
j |. Since

max
oj∈Oi

|Rij − r
(1)
j | − max

oj∈Oi

|Rij − r
(2)
j |

≤ |Riγ − r
(1)
γ | − |Riγ − r

(2)
γ |

≤ |r(1)
γ − r

(2)
γ |

≤ |r(1)
β − r

(2)
β |

and max
oj∈Oi

|Rij − r
(2)
j | − max

oj∈Oi

|Rij − r
(1)
j |

≤ |Riθ − r
(2)
θ | − |Riθ − r

(1)
θ |

≤ |r(1)
θ − r

(2)
θ |

≤ |r(1)
β − r

(2)
β |,

thus the lemma holds. ¤

Lemma 4.5. In the L1-MAX algorithm, let |r1
β − r0

β | =
max

j
|r1

j − r0
j |, then for any object oj, we have |rk+1

j −
rk
j | ≤ λk|r1

β − r0
β |.

Proof. We prove it by induction. For k = 1, we have

|r2
j − r1

j | = | 1
|Ij |

∑
ui∈Ij

c1
i Rij − 1

|Ij |
∑

ui∈Ij

c0
i Rij |

= 1
|Ij | |

∑
ui∈Ij

λ( max
oγ∈Oi

|Riγ − r0
γ | − max

oγ∈Oi

|Riγ − r1
γ |)Rij |

≤ λ
|Ij |

∑
ui∈Ij

| max
oγ∈Oi

|Riγ − r0
γ | − max

oγ∈Oi

|Riγ − r1
γ ||Rij

≤ λ
|Ij |

∑
ui∈Ij

|r1
β − r0

β |Rij

≤ λ|r1
β − r0

β |,
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where the second inequality is due to Lemma 4.4.
Suppose the lemma holds when k = t, we prove the
lemma holds, for k = t+1. Let |rt+1

η −rt
η| = max

j
|rt+1

j −
rt
j |. Then, we have

|rt+2
j − rt+1

j | = | 1
|Ij |

∑
ui∈Ij

ct+1
i Rij − 1

|Ij |
∑

ui∈Ij

ct
iRij |

= 1
|Ij | |

∑
ui∈Ij

λ( max
oγ∈Oi

|Riγ − rt
γ | − max

oγ∈Oi

|Riγ − rt+1
γ |)Rij |

≤ λ
|Ij |

∑
ui∈Ij

| max
oγ∈Oi

|Riγ − rt
γ | − max

oγ∈Oi

|Riγ − rt+1
γ ||Rij

≤ λ
|Ij |

∑
ui∈Ij

|rt+1
η − rt

η|Rij

≤ λt+1

|Ij |
∑

ui∈Ij

|r1
β − r0

β |Rij

≤ λt+1|r1
β − r0

β |,

where the second inequality holds due to Lemma 4.4,
and the third inequality is due to the induction assump-
tion. This completes the proof. ¤

With Lemma 4.5, we prove the convergence of the
L1-MAX algorithm.

Theorem 4.2. The L1-MAX algorithm converges to a
unique fixed point.

Proof. For the convergence of the L1-MAX algorithm,
it can be proved in a similar way to prove the conver-
gence of L1-AVG algorithm, thus we omit it. For the
uniqueness, we prove it by contradiction. Assume L1-
MAX converges to at least two fixed points. Let r(1) and
r(2) be the two fixed points, and let M = |r(1)

β − r
(2)
β | =

max
j
|r(1)

j − r
(2)
j |. Then, we have

M = |r(1)
β − r

(2)
β |

= 1
|Iβ | |

∑
ui∈Iβ

(c
(1)
i − c

(2)
i )Riβ |

= 1
|Iβ | |

∑
ui∈Iβ

λ( max
oγ∈Oi

|Riγ − r
(1)
γ | − max

oγ∈Oi

|Riγ − r
(2)
γ |)Riβ |

≤ λ
|Iβ |

∑
ui∈Iβ

| max
oγ∈Oi

|Riγ − r
(1)
γ | − max

oγ∈Oi

|Riγ − r
(2)
γ ||Riβ

≤ λ
|Ij |

∑
i∈Ij

|r(1)
β − r

(2)
β |Rij

≤ λ|r(1)
β − r

(2)
β |

= λM.

Since λ ∈ (0, 1), we get a contradiction. Therefore, the
L1-MAX algorithm converges into a unique fixed point.

¤
The rate of convergence of L1-MAX algorithm:
The rate of convergence of the L1-MAX algorithm is
exponential, as given in Lemma 4.6, which can be
proved in a similar way to prove Lemma 4.3. We omit
the proof.

Lemma 4.6. In the L1-MAX algorithm, let |r∞β −rk
β | =

max
j
|r∞j − rk

j |. Then, we have |r∞β − rk
β | ≤ λk.

Complexity of L1-MAX algorithm: Similar to the
L1-AVG algorithm, the amortized time complexity of
L1-MAX algorithm is O(k|R|). With the exponential
rate of convergence of the L1-MAX algorithm, k typ-
ically is very small in practice. Hence, the time com-
plexity of the L1-MAX algorithm is linear w.r.t. the
size of the graph. In addition, the space complexity of
the L1-MAX algorithm is O(|R|+ |U |+ |O|).
Convergence of L1-MIN algorithm: First, we prove
the following lemma.

Lemma 4.7. Let r(1) and r(2) be two ranking vectors,
and |r(1)

β −r
(2)
β | = max

j
|r(1)

j −r
(2)
j |. Then, for any user ui

with the corresponding Oi, we have | min
oj∈Oi

|Rij − r
(1)
j | −

min
oj∈Oi

|Rij − r
(2)
j || ≤ |r(1)

β − r
(2)
β |.

Proof. Let |Riγ − r
(1)
γ | = min

oj∈Oi

|Rij − r
(1)
j |, and |Riθ −

r
(2)
θ | = min

oj∈Oi

|Rij − r
(2)
j |. Apparently, | min

oj∈Oi

|Rij −
r
(1)
j | − min

oj∈Oi

|Rij − r
(2)
j || either equals to min

oj∈Oi

|Rij −
r
(1)
j | − min

oj∈Oi

|Rij − r
(2)
j | or equals to min

oj∈Oi

|Rij − r
(2)
j | −

min
oj∈Oi

|Rij − r
(1)
j |. Since

min
oj∈Oi

|Rij − r
(1)
j | − min

oj∈Oi

|Rij − r
(2)
j |

≤ |Riθ − r
(1)
θ | − |Riθ − r

(2)
θ |

≤ |r(1)
θ − r

(2)
θ |

≤ |r(1)
β − r

(2)
β |,

and
min
j∈Oi

|Rij − r
(2)
j | − min

j∈Oi

|Rij − r
(1)
j |

≤ |Riγ − r
(2)
γ | − |Riγ − r

(1)
γ |

≤ |r(1)
γ − r

(2)
γ |

≤ |r(1)
β − r

(2)
β |

thus the lemma holds. ¤

Lemma 4.8. In the L1-MIN algorithm, let |r1
β − r0

β | =
min

j
|r1

j − r0
j |, then for any object oj, we have |rk+1

j −
rk
j | ≤ λk|r1

β − r0
β |.

Theorem 4.3. The L1-MIN algorithm converges to a
unique fixed point.

Similarly, the proof of Lemma 4.8 and Theorem 4.3 are
similar to the proof of Lemma 4.5 and Theorem 4.2
respectively, thus we omit the proofs.

The rate of convergence of L1-MIN algorithm:
We can prove that the rate of convergence of L1-MIN
algorithm is exponential. We present the main result in
the following lemma.
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Lemma 4.9. In the L1-MIN algorithm, let |r∞β − rk
β | =

max
j
|r∞j − rk

j |. Then, we have |r∞β − rk
β | ≤ λk.

Complexity of L1-MIN algorithm: Similar to the
L1-AVG and L1-MAX algorithms, the amortized time
complexity of the L1-MIN algorithm is O(k|R|). Due
to the exponential rate of convergence of the L1-MIN
algorithm, k is very small in practice. As a result, the
time complexity of the L1-MIN algorithm is linear w.r.t.
the size of the graph. Additionally, the space complexity
of the L1-MIN algorithm is O(|R|+ |U |+ |O|).
5 Experiments

In this section, we evaluate the effectiveness, robustness,
and efficiency of the proposed algorithms, and report
our findings.

Datasets: We conduct our experiments on three real
datasets. (1) Amazon dataset: we collect the product
review information of Amazon dataset from Stanford
network analysis data collections [20]. This dataset
contains 1,555,170 users, 402,724 objects, and 6,359,182
ratings. We scale the original rating score ([0, 5]) into
[0, 1]. (2) Bookcrossing dataset: Bookcrossing (www.
bookcrossing.com) is an online book club website.
Users in Bookcrossing can give ratings to some books.
In our experiments, we use the dataset collected by
Ziegler et al. [35]. This dataset includes 125,274 users,
340,545 books, and 1,071,158 ratings. The original
ratings ([0, 10]) are scaled into [0, 1]. (3) Epinions
dataset: Epinions (www.epinions.com) is a product
review website. Users in Epinions can give ratings to
some products. In our experiments, we use the dataset
crawled by Massa et al. [22]. The dataset contains
40,163 users, 139,738 products, and 1,149,766 ratings,
where the original ratings ([0, 5]) are scaled into [0, 1].

Baselines: We compare our proposed algorithms with
five baselines: (1) Arithmetic average algorithm (AA)
which ranks the objects by the average ratings of the
objects, (2) HITS algorithm [18], (3) Mizz algorithm
[25], (4) YZLM algorithm [32], and (5) dKVD algorithm
[8]. The original HITS algorithm works on unweighed
graph. In our experiments, we use the HITS algorithm
proposed in [9] that work on weighted graphs. Mizz
[25] is an iterative reputation-based ranking algorithm.
The user’s reputation in Mizz is determined by the
root of L1-distance between user’s ratings and the
corresponding objects’ ranking. Mizz cannot guarantee
convergence. YZLM is also an iterative reputation-
based ranking algorithm, and is the state-of-the-art
algorithm as indicated in [23]. However, YZLM cannot
guarantee convergence. The dKVD algorithm is also
an iterative reputation-based ranking algorithm, which
converges but in q-linear rate. Additionally, dKVD

is not very robust to the spamming users and its
parameters are hard to be determined in practice.

Methodology and evaluation metrics: We evaluate
our algorithms in two aspects: the effectiveness and the
robustness. How to get the ground truth is an important
problem for evaluating the effectiveness of the ranking
algorithms. In practice, no ground truth rankings are
known in advance. To evaluate the effectiveness of
our algorithms, we use the rank yielded by AA as the
ground truth. The reason is of twofold: (1) AA uses
the meta-information (i.e. average ratings) for ranking,
which is a popular method for generating ground truth
for ranking in IR community [15], and (2) although
AA ignores user’s reputation in ranking, some practical
systems use AA to rank the objects as it is easy to
be implemented [8]. After obtaining the ground truth,
we apply the widely used Kendall Tau metric [17] to
measure the rank correlation between the rank yielded
by a ranking algorithm and the ground truth. In
addition, we compare our proposed methods with other
baselines in Kendall Tau metric.

To evaluate the robustness of our algorithms, we
first add random spamming users into the original
datasets to generate noisy datasets. Here the spamming
users include (1) the users who give completely random
ratings, (2) the users who only give maximal ratings,
and (3) the users who only give minimal ratings. Sec-
ond, we run our algorithms and the baselines on both
the original datasets and the noisy datasets. Third,
we compute the Kendall Tau for each algorithm. Here
the Kendall Tau is computed between two ranks which
are yielded by the ranking algorithm on the original
datasets and the noisy datasets, respectively. Finally,
we compare the Kendall Tau among all algorithms. In-
tuitively, the larger Kendall Tau of the algorithm implies
the algorithm is more robust.

Parameter settings and experimental environ-
ment: In our proposed algorithms, there is only one
parameter λ, which is the decay constant. In all our ex-
periments without otherwise specified, we set λ = 0.1.
For all parameters of the baselines, we use the same as
given in their original papers respectively. We set the
maximal iterative steps to 30. All the experiments are
conducted on a Window Server 2008 with 4x6-core Intel
Xeon 2.66 Ghz CPU, and 128G memory. All algorithms
are implemented by MATLAB 2010a and VC 6.0.

5.1 Experimental results We report our experi-
mental results as follows.

Effectiveness: Fig. 2, Fig. 3, and Fig. 4 show the
rank correlation between two ranks by a ranking algo-
rithm and AA on Amazon, Bookcrossing, and Epinions
datasets, respectively.
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As shown in Fig. 2, Fig. 3, and Fig. 4, we find
that the L1-MIN and L2-MIN achieve the best rank
correlation with AA on most datasets. Moreover,
the ranking performance of the L1-AVG, L1-MAX,
L2-AVG, and L2-MAX are also comparable with the
reputation based ranking algorithms (Mizz, YZLM,
and dKVD). The results indicate that our proposed
algorithms are effective for ranking objects on rating
networks. It is worth noting that HITS exhibits quite
poor performance (even exhibits negative correlation
to AA on Amazon datasets), as it does not consider
the users’ reputation in ranking. Consequently, in the
following experiments, we do not report the results of
HITS because it is not effective for ranking on rating
networks.
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Figure 2: Comparison of effectiveness on Amazon
dataset.
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Figure 3: Comparison of effectiveness on Bookcrossing
dataset.
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Figure 4: Comparison of effectiveness on Epinions
dataset.

We also compare the Kendall Tau between two
ranks by our algorithms and other baselines. As shown
in Table 7, Table 8, and Table 9, the proposed algo-
rithms are strong correlated to the baselines on all three
real datasets. This results confirm that our proposed
algorithms are effective as other reputation-based al-
gorithms. In particular, L1-MIN and L2-MIN achieve
the best correlation with the baselines, followed by L2-
AVG, L1-AVG, L2-MAX, and L1-MAX. In general, on
all three datasets, our algorithms exhibit the best cor-
relation with AA, and then with Mizz, YZLM, and

dKVD. It is interesting to note that L1-MIN and L2-
MIN achieve the same performance on all three datasets.

Table 7: Kendall Tau on Amazon dataset.
Algorithms AA Mizz YZLM dKVD

L1-AVG 0.866 0.819 0.783 0.746
L1-MAX 0.686 0.662 0.639 0.627
L1-MIN 0.982 0.867 0.822 0.782
L2-AVG 0.914 0.864 0.822 0.782
L2-MAX 0.847 0.816 0.783 0.756
L2-MIN 0.982 0.867 0.822 0.782

Table 8: Kendall Tau on Bookcrossing datasets
Algorithms AA Mizz YZLM dKVD

L1-AVG 0.756 0.757 0.747 0.742
L1-MAX 0.738 0.735 0.727 0.725
L1-MIN 0.938 0.939 0.921 0.902
L2-AVG 0.768 0.764 0.751 0.745
L2-MAX 0.773 0.770 0.758 0.753
L2-MIN 0.938 0.939 0.921 0.902

Table 9: Kendall Tau on Epinions datasets
Algorithms AA Mizz YZLM dKVD

L1-AVG 0.807 0.811 0.808 0.795
L1-MAX 0.759 0.758 0.754 0.749
L1-MIN 0.978 0.869 0.909 0.882
L2-AVG 0.824 0.826 0.823 0.808
L2-MAX 0.832 0.829 0.826 0.817
L2-MIN 0.978 0.869 0.909 0.882

Robustness: To evaluate the robustness of an algo-
rithm, we add to the original datasets three types of
spamming users, who give ratings to a random set of
objects. We test the ranking algorithms on both orig-
inal datasets and the noisy datasets with 10% to 50%
spamming users, where each type of spamming users has
the same proportion. Fig. 5, Fig. 6, and Fig. 7 show the
robustness of the ranking algorithms by Kendall Tau vs.
spamming ratio.

As depicted in Fig. 5, Fig. 6, and Fig. 7, we can
clearly see that L1-MAX and L2-MAX achieve the best
robustness on Amazon and Epinions datasets, while
in Bookcrossing dataset L1-AVG and L2-AVG achieve
the best performance. In Aamzon and Bookcrossing
datasets, we find that L1/L2-MAX, and L1/L2-AVG
are significantly more robust than the other algorithms.
However, in Epinions datasets, L1-MAX and L2-MAX
perform better than the other algorithms. The robust-
ness of L1-MIN and L2-MIN are not good, but they
are still comparable with the other algorithms. It is
important to note that the state-of-the-art reputation-
based algorithm (YZLM) is not very robust in Amazon
and Bookcrossing datasets, and its robustness is even
worse than AA. Similarly, the robustness of dKVD is
not desirable, which is worse than AA on Amazon and
Epionions datasets. In general, for all algorithms, the
robustness decreases as the spamming ratio increases.
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Figure 5: Robustness testing on Amazon dataset.
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Figure 6: Robustness testing on Bookcrossing dataset.

Efficiency: We compare the running time of our
algorithms and the baselines on Amazon datset, and
similar results can be observed on other two datasets.
For all algorithms, we set the termination condition by
either the iterations exceed 30 or the average ranking
difference between two consecutive iterations is less than
1e-8. As shown in Fig. 8, we can observe that our
algorithms are more efficient than the other iterative
algorithms. The running time of our algorithms is
around 2-5 seconds. Mizz and YZLM are not efficient,
as these two algorithms do not converge. dKVD is also
not efficient, because the rate of convergence is q-linear.
This results confirm our time complexity analysis.

Analysis of convergence: We study the convergence
of our algorithms. In particular, we study the maximal
ranking difference between two consecutive iterations.
Fig. 9 shows how this difference decreases as the itera-
tions increases on Amazon dataset, and similar results
can be observed in other two datasets. As shown in
Fig. 9, we can observe that all of our algorithms con-
verge in only 8 iterations. This results confirm the fact
that the algorithms converge in exponential rate as an-
alyzed in Section 4.

Effect of parameter λ: We study the effect of param-
eter λ in our algorithms on Amazon dataset and the
corresponding noisy dataset with 20% spamming ratio.
Similar results can be observed on the other datasets.
Specifically, we study the effect of λ w.r.t. the effective-
ness and robustness of the algorithms. Fig. 10(a) de-
picts the effectiveness of our algorithms under various
λ, where the effectiveness is measured by the rank corre-
lation between our algorithms and AA. From Fig. 10(a),
we can observe that L1/L2-MIN, and L2-AVG are quite
robust w.r.t. λ, and the effectiveness of L1-AVG, L1-
MAX, and L2-MAX decrease as λ increases. Fig. 10(b)
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Figure 7: Robustness testing on Epinions dataset.
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Figure 8: Comparison of efficiency on Amazon dataset.

shows the robustness of our algorithms under different
λ. As depicted in Fig. 10(b), we can find that the ro-
bustness of L1-MIN, L2-MIN, L2-AVG, and L2-MAX
are not very sensitive w.r.t. λ. The robustness of L1-
AVG decreases as λ increases. The robustness of L1-
MAX decreases as λ increases when λ ≤ 0.65, and oth-
erwise the robustness of L1-MAX algorithm increases as
λ increases. In general, the difference between the max-
imal and minimal robustness of all our algorithms do
not exceed 0.08 under various λ, which indicates that
the robustness of our algorithms is not very sensitive
w.r.t. the parameter λ. In practice, we suggest to set
λ = 0.1 as all our algorithms achieve both effective and
robust rank when λ = 0.1.

6 Conclusion

In this paper, over a bipartite rating network, we
propose six new reputation-based ranking algorithms,
where user’s reputation is measured by the aggregated
difference between the user’s rating and the correspond-
ing object’s ranking. We prove the convergence proper-
ties of the proposed algorithms. We evaluate the pro-
posed algorithms in three real datasets, and the results
confirm that our algorithms are effective, efficient, and
robust. Future work includes generalizing the proposed
algorithms to time-evolving bipartite networks and ex-
ploring our algorithms for other data mining applica-
tions, such as finding reliable users and content in Com-
munity Question Answering systems [3], and recogniz-
ing high quality papers in paper review systems [25].
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